US009424209B2

a2 United States Patent

Parra et al.

US 9,424,209 B2
Aug. 23, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

DYNAMIC HETEROGENEOUS HASHING
FUNCTIONS IN RANGES OF SYSTEM
MEMORY ADDRESSING SPACE

Applicants:Jorge E. Parra, El Dorado Hills, CA
(US); Joydeep Ray, Folsom, CA (US);
Ramadass Nagarajan, Portland, OR
(US)

Inventors: Jorge E. Parra, El Dorado Hills, CA

(US); Joydeep Ray, Folsom, CA (US);

Ramadass Nagarajan, Portland, OR

(US)

INTEL CORPORATION, Santa Clara,
CA (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 352 days.
Appl. No.: 14/031,398
Filed: Sep. 19, 2013

Prior Publication Data

US 2015/0082002 Al Mar. 19, 2015

Int. CL.

GO6F 12/00 (2006.01)

GO6F 13/16 (2006.01)

GO6F 12/06 (2006.01)

U.S. CL

CPC GO6F 13/16 (2013.01); GO6F 12/0607

(2013.01)

Field of Classification Search
CPC GO6F 12/0607;, GOG6F 13/16
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,438,320 B2* 5/2013 Srinivasan GOGF 12/0607
710/33
2009/0235020 Al* 9/2009 Srinivasan GOGF 12/0607
711/106
2010/0037024 Al* 2/2010 Brewer GOGF 12/0851
711/127
2011/0161553 Al1* 6/2011 Saxena GOGF 12/0246
711/103
2012/0079177 Al* 3/2012 Brewer GOGF 12/0851
711/103
2012/0278651 Al* 112012 Muralimanohar G11C 29/76
714/6.11
2015/0078375 Al* 3/2015 Hendel HO4L 45/7453
370/389

OTHER PUBLICATIONS
Tetsuhide Senta, Interleaving and Hashing for Start System, Aug.
10, 1991, Laboratory for Computer science, MIT, pp. 1-47.*

* cited by examiner

Primary Examiner — Reginald Bragdon
Assistant Examiner — Medhi Namazi
(74) Attorney, Agent, or Firm — Lowenstein Sandler LLP

57 ABSTRACT

Dynamic heterogeneous hashing function technology for
balancing memory requests between multiple memory chan-
nels is described. A processor includes functional units and
multiple memory channels, and a memory controller unit
(MCU) coupled between them. The MCU includes a
dynamic heterogeneous hashing module (DHHM) that
includes multiple specific-purpose hashing function blocks
that define different interleaving sequences for memory
requests to alternately access the multiple memory channels.
The DHHM also includes a hashing-function selection
block. The hashing-function selection block is operable to
identify a requesting functional unit originating a current
memory request and to select one of the specific-purpose
hashing function blocks for the current memory request in
view of the requesting functional unit.

23 Claims, 12 Drawing Sheets

250 ~ DHHM 207
I
Requesting | Memory Address Range
Functional > Comparator 262
unit 252 | ———

Configuration Register A
280

Specific-Purpose Hashing
Function A 270

w

Configuration Register B
282

1]
. Specific-Purpose Hashing
Function B 272

General-Purpose Hashing
Function 254

Hashing-Function
Selection Block

|
L,/\/zao

Memory
Channel
Other 1258
MC
Blocks
256 Memory
— Channel
2 258

Multiple hashing functions for
ISOCx IPs in a system with two
memory channels

290

U.S. Patent Aug. 23,2016 Sheet 1 of 12 US 9,424,209 B2

100
Y

PROCESSOR 102

REGISTER FILE
106
EXECUTION UNIT(S)
108

o

CACHE 104

MCU 105

DYNAMIC
HETEROGENEOUS
HASHING MODULE

(DHHM) 107

PROCESSOR
BUS 110

MEMORY 120
INSTRUCTION

DATA

FIG. 1

US 9,424,209 B2

Sheet 2 of 12

Aug. 23, 2016

U.S. Patent

g¢ old
sjpuueyd Alowaw 06e
oM} ypm Wwa)sAs e ul sd| XO0S| ssedAg | Gz uonoun4
JoJ suonouny Buiysey sidnnpy Buiysey osoding-lesouss) A
T
_ _
| —
« 1| ¢/l¢ g uonoung
oz 2 m \ ! BuiyseH asoding-oyadg
[puueyn —= | ! A
fowa _ e Z8¢
syoolg | o2 ! g JoysiBay uoneinBbiyuon
O _ —_—
==z BYI0 m XN “ ﬁ 0Zc V UojoUN
[BuiyseH esodind-oyioad
lULEYD) | | IyseH ; d-oyloedg
Alows _ m—
i R SN | 08¢
_ | v Jeisibay uoneinbiyuo)
| T — — I|IQ ||||||||| i 76 nun
_ ¢9¢ Jojeledulod | [BuonduUNS
omm\n/l\) abuey ssaippy AJows I .
00|g UONO3IAS _ d PRV N | Bunsenbay
uopoung-buiysey | T T T T T T T T T T T
202 WHHQ ® 05z
80¢ ¢ Ve 9Old
[pUUBYD) | —
Aows TavZ
A m@%ow uonoung 20¢ Jun
OM} U}IM WB)SAS B Ul Sd| || 1o} — %_\,_O poxig Bunsanbay
uonouny Buiysey pexiy ‘s|buls 184y ‘a6 .
houny Dulysey paxy ‘elbuis v | o o|buig . 00z
AlOWB

U.S. Patent Aug. 23,2016 Sheet 3 of 12 US 9,424,209 B2

Single comparator 300

Comparator for: Outputs 303:
Address 301 Address < Rangel 00: iddress < Range 1
Range 1 < Address < Range2 1: Range 1 < Address < Range2
Range 2 < Address < Range3 10: Range 2 < Address < Range3
Range 3 < Address 11: Range 3 < Address

FIG. 3A

comparator 350

y

Comparator for:
Address < Rangel
comparator 350
/—_/
Comparator for:
Range 1 < Address
Outputs 353:
<Range2
Address 301 0001: Address < Range 1
0010: Range 1 < Address < Range2

0100: Range 2 < Address < Range3
Comparator for: 1000: Range 3 < Address

VNN VIR VIRV’

Range 2 < Address
<Range3
\/—-\\cgnparator 350
Comparator for:
Range 3 < Address L

/wparator 350
FIG. 3B

U.S. Patent Aug. 23,2016 Sheet 4 of 12 US 9,424,209 B2

400\

j
=

Load Hashing functions

conflguration registers \—402

System Initialization

e e

An IP sends a request to
memory

N

DHHM gets the request’s
address

N\—404

s o s System Run

[\—406

. . Memory Address Range Comparator compares
Address is processed by all hashing the address with all the ranges for each hashing

functions 410 function 408

Output of hashing function is used as multiplexer inputs,
output of Memory Address Range Comparator is used as

enabled?
414

. General purpose hashing
M.u I_t Iplexer rou‘bes OI.Jtput of function is routed to output
wihing hashing function 416 418

FIG. 4 A2 %

Address outputs from the DHHM and continues to the rest of the memory
controller circuitry

U.S. Patent

Aug. 23,2016 Sheet 5 of 12

500 "\

START

Loading configuration registers to
program specific-purpose hashing
functions of DHHM
502
=

Memory request
received? 504

Identify a requesting functional unit that
originated the memory request 506

Special-Purpose
Hashing? 508

Select an appropriate one of the special-
purpose hashing functions in view of the
identified functional unit
810

Perform a

general-purpose

hashing function

on the address
214

Perform the selected special-purpose
hashing function on the address 512

FIG. 5

US 9,424,209 B2

US 9,424,209 B2

Sheet 6 of 12

Aug. 23, 2016

U.S. Patent

g9 '9ld] =
y 979 || dunseyoe)erq 029
Iun 8Yoe Z7 770 yun Aows|y
jun gL ejed
099 (s)aysn|n uonnoaxg
799 (shun 299 B
$5200y AIOWaly (s)un uonnoaxg
i Se— E S—— s— S ,
| I |
| 859 |
! (shiun sell4 seysiBey [eatshud _
|
- _||||||||h||||||||»| |||||||||||||||| ! 750 _
___959 (shunJsinpayos _ _j | yunewaimey |
759 1un Hoﬂwnw__«\m&&mmu Jh 059
I__¢zd 2710 y ittt 1 Jun sulbug uonnosx3
]
_ 079 N 8poos(| 069
A jun pu3 uoi4
| 259 yoeduoponsy) |
N — 069
€9 Jun gL uopongsy] | €9 Y]
7€9 JUM dyoe uononasu] | Jun uopaIpsid youe.g
v9 Ol4
e i 000000 O m———— fm——— o _
ﬂmmﬁ M 979 74 L ow aw | w9 o B |7e |~ o0
upuey | o & 5 pray Alowa I5 . uipoaaQ augediy
Iwwon |m vondeoxg EQMMEM__\L,_E abeig anoexg 1pesy JaisiBay gnpayasg " c_Emcmm__ 20|y | 8p0oa(ubus] yae4 jea]

US 9,424,209 B2

Sheet 7 of 12

Aug. 23, 2016

U.S. Patent

L9l
8yoe)) | [9A97 01 ayoey) | [9A9 01
A 3 3
_ _ _ _
vel el 0cl 817 91/ 2 47
SAOW d dd NTY MOIS\ | FNTV ISES N1y Jsed nov nov
4 4
0L/ IOMIBN || 80/
ssedAg / 9)14 4818168y d4 yomaN ssedAg / aj14 seisibay 1sbsy| / I
Y i Y A [} A A ¥o0jg X3
907 Jsinpayos iz 207 1o|npayds
dd 9dwig 18|Npayas d [essusn)/mo|g J3|npayog 1se4 Aowspy
[} A [} [} s £0.
ansnp ~8ulbus Jopi0 JO 1IN0
anany) dOn ulod Buneoj4/18bs)u| 40N Aowayy
[) [}
| Jaweusy J81s168y/10)e00|y 00/
A / 1085900,
L | 0¢z
anand dof ayoen) 8o.l]
7 _
NOY 8¢/
8pO20IIN Japoos(uononIsu|
107 9¢z
pu3 Juoi4 Jaydisya1d uoijonisy|

US 9,424,209 B2

Sheet 8 of 12

Aug. 23, 2016

U.S. Patent

8 'Old
0€8
Eje(] puy 8pod — —
355 LC8 4]
828 8beiois ejeq $80IA8(] WWO) asNO|\/pieoghey
028
274 78 8I8
O/l opny s8d1neq O/l ebpug sng
Sw&
968 68
el][AN Q - m
%60 . 760 salyaels) ped-ybiy
dd 65 JesdiyD dd
@n/: ‘ mu/;,
998 899 ™| 828 9/8
d-d d-d [* 1§ d-d d-d
088
7E8 4 3 e8
Aowapy INI NI Klowsy
088 10SS820.id 078 10Ss8001d

v/ccw

US 9,424,209 B2

Sheet 9 of 12

Aug. 23, 2016

U.S. Patent

739
flows|y

e8
Alowsy

6 9l
g6
0/l Aoeba
962
4/l
968 . 768
dd 068 1esdiyo dd
758 —~_| 7w~
998 988 ™ 528 9/8
dd dd [f dd dd
068
268 c/8
10 10
088 Jossso0.d 078 10SS8001d
7i6
$801A8(Q Ol

/oom

US 9,424,209 B2

Sheet 10 of 12

Aug. 23, 2016

U.S. Patent

0L Ol
__ __ _ T07 o k
0r0l) 0€01 (s) 98¢0} _
Jun Jajjonucd _
nun Aeidsig N YINa N WS Kiowsly paeibel " 1058000id 09PN |
T T
_ 920} !
| lossedoidopny |
e e o o o — — — ———— L
T T
5701 |
9707 — \ | Z40 |
(S)uun J8l03U0D SN CO0F (Shuun 1oeuuooieiu A ool
ST oIIIIIIICC
I _ |
o ____ _ 8007 |
! | /__ soydess) pajesbeju) |
| o % " oo !
_ s)iun syoe) pase -
! jun syoey psieys “ 0207
L e — (8)105$800.d eIps
|
0707 A [_
yun usby wajsAg | N700! [V700!
_ (shun I® @ @ (shun
! syoe) “ ayoe)
I |
|
| Ngoop ei09 | V2007 9100
|||||||||| 010L 000}
105590014 uonedyddy /Q.Eo Y uo wojsAs

US 9,424,209 B2

Sheet 11 of 12

Aug. 23, 2016

U.S. Patent

LE OI4
SSIL
- [0JJU09) Jemod
SoIT 0911
ysel4 NWvdd
[T8 P A A
I4M 11208 |
B 0%I7 SrIT 0FLT SeIr I
Od J8|jonuo) ysel4 J8jjonuo) NvYEas NOY 1008 WIS
081 | —
Sd9 TELT
108UU02IBIU|
— N —
W 6011
L oywegzl || dun eoepelul sng
G/LE - GZLl —
WSPON O¢ 4/ O9PIA A1 § g 8011 103U0D 8YOED 2]
98p0) 08pPIA Nd9
[0i7 9017
8J07 8109
T . \
yioolen|g /8:
/8:

U.S. Patent Aug. 23,2016 Sheet 12 of 12 US 9,424,209 B2

PROCESSING DEVICE
1202 e oL STATIC MEMORY
e 1206
INSTRUCTIONS |
1226
I ™ VIDEO DISPLAY
UNIT 1208
BUS =622
MAIN MEMORY 1204 1930
INSTRUCTIONS | |, ALPHA-NUMERIC
1226 f————pst |[NPUT DEVICE
1212
GRAPHICS
PROSET?NG - > CURSOR
1222 -t w CONTROL DEVICE
1214
VIDEO
PROCESSING R SIGNAL
UNIT . GENERATION
1228 o DEVICE
1216
AUDIO
PROCESSING - = DATA STORAGE DEVICE
UNIT 1218
1232 ——
MACHINE-READABLE
MEDIUM 1224
NETWORK PP
INTERFACE _
DEVICE INSTRUCTIONS
1208 1226
‘wg _____

FIG. 12

US 9,424,209 B2

1
DYNAMIC HETEROGENEOUS HASHING
FUNCTIONS IN RANGES OF SYSTEM
MEMORY ADDRESSING SPACE

Embodiments described herein generally relate to pro-
cessing devices and, more specifically, relate to dynamic
heterogeneous hashing architectures and operating the same.

BACKGROUND

In computing, memory refers to the physical devices used
to store programs (e.g., sequences of instructions) or data
(e.g. program state information) on a temporary or perma-
nent basis for use in a computer or other digital electronic
devices. The terms “memory,” “main memory” or “primary
memory” can be associated with addressable semiconductor
memory, i.e. integrated circuits consisting of silicon-based
transistors, used for example as primary memory in com-
puters.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a computing system
that implements a memory controller unit (MCU) with a
dynamic heterogeneous hashing module (DHHM) for
dynamic hashing according to one embodiment.

FIG. 2A is a block diagram of a conventional system with
a fixed hashing function for two memory channels according
to one implementation.

FIG. 2B is a block diagram of a DHHM with multiple
specific-purpose hashing function blocks and a hashing-
function selection block according to one embodiment.

FIG. 3A is a block diagram of a single comparator for the
hashing-function selection block according to one embodi-
ment.

FIG. 3B is a block diagram of multiple comparators for
the hashing-function selection block according to another
embodiment.

FIG. 4 is a flow diagram of a DHHM for dynamic
heterogeneous hashing according to one embodiment.

FIG. 5 is a flow diagram of a method of dynamic
heterogeneous hashing according to another embodiment.

FIG. 6A is a block diagram illustrating an in-order pipe-
line and a register renaming stage, out-of-order issue/execu-
tion pipeline according to one embodiment.

FIG. 6B is a block diagram illustrating a micro-architec-
ture for a processor that implements dynamic heterogeneous
hashing according to one embodiment.

FIG. 7 illustrates a block diagram of the micro-architec-
ture for a processor that includes logic circuits to perform
dynamic heterogeneous hashing according to one embodi-
ment.

FIG. 8 is a block diagram of a computer system according
to one implementation.

FIG. 9 is a block diagram of a computer system according
to another implementation.

FIG. 10 is a block diagram of a system-on-a-chip accord-
ing to one implementation.

FIG. 11 illustrates another implementation of a block
diagram for a computing system.

FIG. 12 illustrates another implementation of a block
diagram for a computing system.

DESCRIPTION OF EMBODIMENTS

Dynamic heterogeneous hashing technology for balanc-
ing memory requests between multiple memory channels is

10

15

20

25

30

35

40

45

50

55

60

65

2

described. A processor includes multiple functional units
and multiple memory channels, and a memory controller
unit (MCU) coupled between them. The MCU includes a
dynamic heterogeneous hashing module (DHHM) that
includes multiple specific-purpose hashing function blocks
that define different interleaving sequences for memory
requests to alternately access the multiple memory channels.
The DHHM also includes a hashing-function selection
block. The hashing-function selection block is operable to
identify a requesting functional unit originating a current
memory request and to select one of the specific-purpose
hashing function blocks for the current memory request in
view of the requesting functional unit.

Modern microprocessor-based products, such as System
on Chip (SoC), Clients, Servers and Hardware accelerators,
may feature a large diversity of functional units, such as
intellectual property (IP) cores. An IP core is a reusable unit
of logic, cell or chip layer design that is the intellectual
property of one party. The tasks that these functional units
execute are also very diverse and therefore, the transactions
to the system’s memory that they request do not exhibit
homogeneous addressing patterns. Current architectures are
designed to feature a single path to memory which services
all the system component’s memory transactions. This path
is optimized to deliver the highest performance to the most
common addressing patterns. However, the 1P cores that
generate transactions whose addressing patterns deviate
from the general case can suffer from performance degra-
dation or may not efficiently utilize the memory path. The
embodiments described herein address this problem by
segmenting the system memory space into several regions,
each region corresponding with a programmable hash func-
tion, including one or more specific-purpose hashing func-
tions and a general-purpose (default) hashing function.

One goal in design of a memory system is to create a
configuration that services data requests from every client
with the lowest possible latency. Current memory technolo-
gies provide high-capacity, low-cost DRAM memory mod-
ules that need to be interleaved to achieve the required
bandwidth and latencies. It is common to have systems with
multiple DRAM channels that are alternately accessed.
Therefore, while a channel is busy retrieving or writing a
data page, another data request can be scheduled in another
channel. The resulting effect of this strategy allows the
processor to obtain a continuous stream of data pages to or
from the memory system. The embodiments described
herein provide multiple specific-purpose hashing functions,
as well as a default general-purpose hashing function, which
can be selected to determine how the memory channels are
alternately accessed, as described in more detail herein. The
physical memory can be segmented into multiple memory
regions, where each of the memory regions corresponds to
one of the specific-purpose hashing functions and the gen-
eral-purpose hashing function as described herein.

FIG. 1 is a block diagram illustrating a computing system
100 that implements a memory controller unit (MCU) 105
with a dynamic heterogeneous hashing module (DHHM)
107 for dynamic hashing according to one embodiment. The
computing system 100 is formed with a processor 102 that
includes one or more execution units 108 to execute an
instruction and the MCU 105 that implements one or more
features in accordance with one or more embodiments as
described herein. In short, the MCU 105 coordinates
memory accesses to the system memory 120 via multiple
memory channels and the DHHM 107 coordinates which
hashing functions to use to balance memory accesses to the

US 9,424,209 B2

3

system memory 120. Additional details regarding the
DHHM 107 are described in more detail below with respect
to FIGS. 2A-5.

Computing system 100 includes a component, such as a
processor 102 to employ execution units 108 including logic
to perform algorithms for processing data, in accordance
with the embodiment described herein. System 100 is rep-
resentative of processing systems based on the PENTIUM
III™, PENTIUM 4™, Xeon™, Itanium, XScale™ and/or
StrongARM™ microprocessors available from Intel Corpo-
ration of Santa Clara, Calif., although other systems (includ-
ing PCs having other microprocessors, engineering work-
stations, set-top boxes and the like) may also be used. In one
embodiment, sample system 100 executes a version of the
WINDOWS™ operating system available from Microsoft
Corporation of Redmond, Wash., although other operating
systems (UNIX and Linux for example), embedded soft-
ware, and/or graphical user interfaces, may also be used.
Thus, embodiments of the present invention are not limited
to any specific combination of hardware circuitry and soft-
ware.

Embodiments are not limited to computer systems. Alter-
native embodiments of the present invention can be used in
other devices such as handheld devices and embedded
applications. Some examples of handheld devices include
cellular phones, Internet Protocol devices, digital cameras,
personal digital assistants (PDAs), and handheld PCs.
Embedded applications can include a micro controller, a
digital signal processor (DSP), system on a chip, network
computers (NetPC), set-top boxes, network hubs, wide area
network (WAN) switches, or any other system that can
perform one or more instructions in accordance with at least
one embodiment.

In this illustrated embodiment, processor 102 includes
one or more execution units 108 to implement an algorithm
that is to perform at least one instruction. One embodiment
may be described in the context of a single processor
desktop or server system, but alternative embodiments may
be included in a multiprocessor system. System 100 may be
an example of a ‘hub’ system architecture. The computer
system 100 includes a processor 102 to process data signals.
The processor 102, as one illustrative example, includes a
complex instruction set computer (CISC) microprocessor, a
reduced instruction set computing (RISC) microprocessor, a
very long instruction word (VLIW) microprocessor, a pro-
cessor implementing a combination of instruction sets, or
any other processor device, such as a digital signal proces-
sor, for example. The processor 102 is coupled to a processor
bus 110 that transmits data signals between the processor
102 and other components in the system 100, such as
memory 120 storing instruction, data, or any combination
thereof. The other components of the system 100 may
include a graphics accelerator, a memory controller hub, an
1/O controller hub, a wireless transceiver, a Flash BIOS, a
network controller, an audio controller, a serial expansion
port, a I/O controller, etc. These elements perform their
conventional functions that are well known to those familiar
with the art.

In one embodiment, the processor 102 includes a Level 1
(L1) internal cache memory 104. Depending on the archi-
tecture, the processor 102 may have a single internal cache
or multiple levels of internal caches. Other embodiments
include a combination of both internal and external caches
depending on the particular implementation and needs.
Register file 106 is to store different types of data in various
registers including integer registers, floating point registers,

10

15

20

25

30

35

40

45

55

60

65

4

vector registers, banked registers, shadow registers, check-
point registers, status registers, configuration registers, and
instruction pointer register.

Execution unit 108, including logic to perform integer and
floating point operations, also resides in the processor 102.
It should be noted that the execution unit may or may not
have a floating point unit. The processor 102, in one embodi-
ment, includes a microcode (ucode) ROM to store micro-
code, which when executed, is to perform algorithms for
certain macroinstructions or handle complex scenarios.
Here, microcode is potentially updateable to handle logic
bugs/fixes for processor 102.

Alternate embodiments of an execution unit 108 may also
be used in micro controllers, embedded processors, graphics
devices, DSPs, and other types of logic circuits. System 100
includes a memory 120. Memory 120 includes a dynamic
random access memory (DRAM) device, a static random
access memory (SRAM) device, flash memory device, or
other memory device. Memory 120 stores instructions and/
or data represented by data signals that are to be executed by
the processor 102. The processor 102 is coupled to the
memory 120 via a processor bus 110. A system logic chip,
such as a memory controller hub (MCH) may be coupled to
the processor bus 110 and memory 120. An MCH can
provide a high bandwidth memory path to memory 120 for
instruction and data storage and for storage of graphics
commands, data and textures. The MCH can be used to
direct data signals between the processor 102, memory 120,
and other components in the system 100 and to bridge the
data signals between processor bus 110, memory 120, and
system /O, for example. The MCH may be coupled to
memory 120 through a memory interface. In some embodi-
ments, the system logic chip can provide a graphics port for
coupling to a graphics controller through an Accelerated
Graphics Port (AGP) interconnect. The system 100 may also
include an I/O controller hub (ICH). The ICH can provide
direct connections to some 1/O devices via a local I/O bus.
The local 1/O bus is a high-speed /O bus for connecting
peripherals to the memory 120, chipset, and processor 102.
Some examples are the audio controller, firmware hub (flash
BIOS), wireless transceiver, data storage, legacy /O con-
troller containing user input and keyboard interfaces, a serial
expansion port such as Universal Serial Bus (USB), and a
network controller. The data storage device can comprise a
hard disk drive, a floppy disk drive, a CD-ROM device, a
flash memory device, or other mass storage device.

For another embodiment of a system, the MCU 105 can
be used with a system on a chip. One embodiment of a
system on a chip comprises of a processor and a memory.
The memory for one such system is a flash memory. The
flash memory can be located on the same die as the proces-
sor and other system components. Additionally, other logic
blocks such as a memory controller or graphics controller
can also be located on a system on a chip.

FIG. 2A is a block diagram of a conventional system 200
with a fixed hashing function 204 for two memory channels
208 according to one implementation. In the conventional
system 200, a requesting functional unit 202 requests access
to the memory via one of the memory channels 208 and the
single fixed hashing function 204 is used to determine which
memory channel 208 is used. The interleaving sequence of
the memory banks is based on the output of a fixed hashing
function 204 fed the addresses of the data pages being
requested. This hashing function 204 is chosen based on the
characteristics of the sequence of addresses being requested
to the memory system. For example, if most of the requests
are being made to sequential pages in the memory, the best

US 9,424,209 B2

5

hashing function in a dual channel system is to issue odd
addresses to one channel and even addresses to the other
channel. Extensive simulations are performed while design-
ing a system to identify the most common addressing
patterns and therefore, to choose the best hashing functions
that in average produce the best balanced channel utiliza-
tions. Once the best hashing function is chosen, the hashing
function is programmed as the single fixed hashing function
204. However, current aggressive systems integrations are
evolving SoC and Client microprocessors into a massive
collection of general-purpose IPs that need to be serviced by
a single memory system. It has been observed that the
characteristics of the transactions that such diverse group of
IP cores request to the memory system are very heteroge-
neous making impossible to find a single hashing function
that optimizes the balanced use of the memory channels.

The embodiments described herein assign one or more
private regions of memory to one or more specific types of
ISOC IP cores, such as those that consume high bandwidth
and that disrupt the general case of homogenous requesting
patterns. The requests from these identified IP cores can be
processed by independent specific-purpose hashing func-
tions that are more suitable to optimize the channel utiliza-
tion under the requesting IP core’s particular requesting
patterns, such as illustrated in FIG. 2A.

FIG. 2B is a block diagram of a DHHM 207 with multiple
specific-purpose hashing function blocks 270, 272 and a
hashing-function selection block 254 according to one
embodiment. The DHHM 207 includes a hashing-function
selection block 260, multiple specific-purpose hashing func-
tion block 270, 272 and the general-purpose hashing func-
tion block 254. The specific-purpose hashing function
blocks 270, 272 define different interleaving sequences for
memory requests by the requesting functional unit 254 to
alternately access system memory (not illustrated) via the
memory channels 258. The general-purpose hashing func-
tion block 254 can define a default interleaving sequence for
the memory requests to alternately access the memory
channels 258. The hashing-function selection block 260 is
operable to identifying the requesting functional unit 252
from the multiple functional units (e.g., IP cores) originating
the memory request. The hashing-function selection block
260 selects one of the specific-purpose hashing functions
270, 272 in view of the identified functional unit 252. For
example, if the requesting functional unit 252 is an IP core
that has been identified as consumes high bandwidth and
that disrupts the general case of homogenous requesting
patterns (i.e., general-purpose hashing function block 254),
the hashing-function selection block 260 can select the
specific-purpose hashing function A 270 that is programmed
for high bandwidth consumption memory requests. The
specific-purpose hashing function 270 is programmed for
specific types of access patterns that are typical of the
requesting functional unit 252. However, if the requesting
function is not assigned (or otherwise associated with) a
specific-purpose hashing function block, the hashing-func-
tion selection block 260 can select the general-purpose
hashing function 254. It should be noted that there may be
multiple functional units that are assigned to the specific-
purpose hashing function 270. Similarly, one or more addi-
tional functional units may be assigned to the specific-
purpose hashing function 272. In further embodiments, the
DHHM 207 can include more than two specific-purpose
hashing functions. Also, the depicted embodiment illustrates
two memory channels 258. In other embodiments, more than
two memory channels 258 may be used.

35

40

45

6

In one embodiment, the specific-purpose hashing func-
tions 270, 272 are fixed hashing functions. In another
embodiment, the specific-purpose hashing functions 270,
272 are programmable. In one embodiment, the specific-
purpose hashing functions 270, 272 are programmed via
configurations registers 280, 282, respectively. These con-
figuration registers 280, 282 may be part of the register file
106 described above with respect to FIG. 1. Alternatively,
these registers are stored in the MCU 105 of FIG. 1.
Alternatively, these parameters that define the specific-
purpose hashing functions can be stored as part of a memory
protection table or the like.

In one embodiment, the specific-purpose hashing function
270 performs a first hashing function, the specific-purpose
hashing function 272 performs a second hashing function,
and the general-purpose hashing function 254 performs a
third hashing function. For example, the third hashing
function is Bité XOR Bit13 XOR Bit 19. This hashing
function can operate to alternate memory accesses to the
memory channels for the general memory requests. The first
hashing function may be Bité XOR Bit9 XOR Bit13 XOR
Bit19, which is special case to alternate memory accesses
according to a pattern that is more suitable for some types of
requesting functional units. The second hashing function
may be Bit6 XOR Bit9 XOR Bit10 XOR Bitl13 XOR Bit19.
Alternatively, other types of hashing functions may be used
for different requesting patterns by one or more specific
requesting functional units (e.g., ISOCx IPs in a system).

In the depicted embodiment, the hashing-function selec-
tion block 260 includes a memory address range comparator
262 and a multiplexer 264 (MUX). The memory address
range comparator 262 receives a memory address of the
current memory request from the requesting functional unit
252. The memory address range comparator 262 uses the
memory address to identify the requesting functional unit
252. The multiplexer 264 receives outputs from the specific-
purpose hashing function blocks 270, 272 and the general-
purpose hashing function block 254 as inputs to the multi-
plexer 262. An output of the memory address range
comparator 262 is configured to control the multiplexer 264
to output one of the inputs in view of the memory address
of the current memory request. That is, if the memory
address range comparator 262 determines that the memory
request corresponds to a requesting functional unit that has
been assigned a private memory region that corresponds to
one of the specific-purpose hashing function 270, the mul-
tiplexer 264 selects the input from the specific-purpose
hashing function 270 to be output from the DHHM 207. The
output of the DHHM 207 can be routed to other memory
controller blocks 256 and ultimately to the memory channels
258. The other memory controller blocks 256 may include
write data buffers, write pending queues, read pending
queues, a global scheduler, read return data paths, page
tables or the like. Additional details of these blocks have not
been included so as to not obscure the present embodiments.

In another embodiment, during the system initializing, an
operating system configures which functional blocks (e.g.,
ISOC 1Ps), whose transactions are to be processed by a
specific-purpose hash function (ISO devices), to request
transactions to a private memory region. A requesting unit
could be configured to still utilize the general-purpose
hashing function for general transactions by bypassing the
specific-purpose hashing functions. Alternatively, the oper-
ating system can configure the DHHM 207 to use the
general-purpose hashing function when the functional units
(e.g., ISOCx 1Ps) with special hashing functions are not in
use, thus not reducing the total memory available. The

US 9,424,209 B2

7

operating system can optionally choose to relocate the data
utilizing that memory region when these functional units
with special hashing functions will be in use. For example,
an IP core for a camera may be an ISOC IP that is not
permanently enabled, and that only consumes resources
upon its utilization. This IP core can be assigned to be
processed by the specific-purpose hashing function 270. In
a further embodiment, the private hashing functions are also
configured during the system’s initialization phase.

After an ISOCx memory requests arrives to the memory
system, as illustrated as the requesting functional unit 252,
the memory request’s address is compared against the
ISOCx memory private ranges assigned to the specific-
purpose hashing functions block 270, 272. Simultaneously
or concurrently, this address can be passed through the
general-purpose hashing function block 254 and the spe-
cific-purpose hashing function blocks 270, 272. The output
of the memory address range comparator 262 is used to
select which hashing function result is fed to the remaining
blocks 256 of the memory controller. The other MC blocks
256, using the output of the selected hashing function routes
the request to the appropriate memory channel 258. Then
when no ISOCx IP is enabled, the results from the general-
purpose hashing function 254 are propagated to the other
block s256 of the memory controller.

Given that the DHHM 207 is in a critical latency path,
considerations can be taken in the implementation of the
memory address comparator 262, the specific-purpose hash-
ing function blocks 270, 272, and the multiplexer 264. That
is, the memory address range comparator 262 should be as
fast as possible. To avoid obtaining a slow, multi-layered
circuit, every memory range to be compared can be done
with an independent comparator and thus, the output of this
unit could be a one-hot number. To improve the speed of the
multiplexor 264, a design using passing gates could be used.
For example, the passing gates may be implemented in
CMOS. Alternatively, other technologies can be used to
implement the memory address range comparator 262 and
multiplexer 264. Using programmable specific-purpose
hashing functions may provide an advantage of being able to
change the hashing configuration late in the product’s design
phase or in its production phase. However, a poorly designed
programmable hashing function could introduce high laten-
cies in an already latency sensitive path. In one embodiment,
passing gate XORs can be used for the specific-purpose
hashing blocks 270, 272. It should be noted that special care
should be taken to avoid logic corruptions due to voltage
drops while sequentially connecting these blocks to a mul-
tiplexer 264 with passing gates. In another embodiment, the
logic design of the multiplexer 264 and the programmable
specific-purpose hashing blocks 270, 272 can be merged.
The latency added by the DHHM 207 is the time that it takes
for an address to be compared plus the time it takes for a
request to be propagated through the output multiplexer 264.

As described herein, multiple hashing functions can be
used for the general-purpose hashing function blocks 254
and the specific-purpose hashing function blocks 270, 272.
An example of a general purpose hashing function: First
Hashing=Bit6 XOR Bit13 XOR Bit19, and graphic traces
from specific requesting functional units can use the follow-
ing specific-purpose hashing function: = Second
Hashing=Bit6 XOR Bit9 XOR Bit13 XOR Bit19. The
second hashing can use the memory channels to the system
memory more efficiently for graphic traces. In some cases,
graphic traces sequentially request memory at a 4K block
granularity that can be effectively hashed by the same bits as
the general-purpose hashing function (First Hashing). How-

10

15

20

25

30

35

40

45

50

55

60

8

ever, these graphic traces can exhibit “jumps” in the
requests’ addresses due to switching between frames that
were simultaneously processed. The effect of these jumps
can be effectively handled by Bits 9 and 10, thus completing
the hashing function shown in Second Hashing above. In
another embodiment, the first hashing can be used for
general memory requests, and memory requests from a
camera functional block can use the following specific-
purpose hashing function: Third Hashing=Bit6 XOR Bit9
XOR Bit10 XOR Bitl3 XOR Bitl9. These examples are
based on memory requests that are 64 bits. Alternatively,
other hashing functions can be used. In particular, the
hashing functions may vary based on the length of the
memory addresses being used.

These embodiments may provide various advantages,
especially to SoC systems or to client microprocessor sys-
tems. For example, the embodiments may select a hashing
function more tailored to the characteristics of the particular
functional unit’s request (e.g., ISOCx IPs requests) to bal-
ance the channels utilization of the memory system. There-
fore, the selected hashing function for those functional units
can provide lower average latencies and higher average
bandwidths. An improvement in the ISOCx performance
may also be observed from a better utilization of the memory
system. Furthermore, a programmable hashing function
allows later changes in the behavior of the memory system.
Firmware changes in the ISOCx IPs can cause less impact of
the memory system. Firmware changes in the ISOCx IPs can
cause less impact to the overall performance of the memory
system if they can be matched by changed in the memory
system.

In a further embodiment, the DHHM 207 includes a
bypass block 290 that bypasses the multiplexer 264 and
routes the output of the general-purpose hashing function
block 254 to the other blocks 256 of the memory controller
when the bypass block 290 is enabled.

FIG. 3A is a block diagram of a single comparator 300 for
the hashing-function selection block according to one
embodiment. The single comparator 300 receives the
address 301 of a current memory request and outputs a value
303 based on the range in which the address 301 falls. For
example, if the address is in a first range (Address<Range 1),
a first value, 00, is output from the comparator 300. If the
address is in a second range (Range 1<Address<Range 2), a
second value, 01, is output from the comparator 300. If the
address is in a third range (Range 2<Address<Range 3), a
third value, 10, is output from the comparator 300. If the
address is in a fourth range (Range 3<Address), a fourth
value, 11, is output from the comparator 300. In further
embodiments, the comparator 300 can be configured to
compare the address 301 against more or less ranges than
four ranges.

FIG. 3B is a block diagram of multiple comparators 350
for the hashing-function selection block according to
another embodiment. The address 301 is input into the four
comparators 350. The first comparator 350 is configured to
determine if the address 301 is in a first range
(Address<Rangel), the second comparator 350 is config-
ured to determine if the address 301 is in a second range
(Range 1<Address<Range2), the third comparator 350 is
configured to determine if the address 301 is in a third range
(Range 2<Address<Range3), and the fourth comparator 350
is configured to determine if the address 301 is in a fourth
range (Range 3<Address). Each comparator 350 outputs a
single bit that can be used as part of the output value 353.
For example, when the address 301 is in the first range, a first
value, 0001, is output; when the address 301 is in the second

US 9,424,209 B2

9

range, a second value, 0010, is output; when the address 301
is in the third range, a third value, 0100, is output; and when
the address 301 is in the fourth range, a fourth value, 1000,
is output.

FIG. 4 is a flow diagram of a DHHM 400 for dynamic
heterogeneous hashing according to one embodiment. On
system initialization, the hashing functions configuration
registers are loaded with their values (block 402). On system
run, a requesting IP core sends a request to memory (block
404). The DHHM 400 obtains the memory address from the
request (block 406). In parallel, a memory address range
comparator compares the address with all the ranges for
each hashing function and gives output to multiplexer (block
408) and the address is processed by all hashing functions
(block 410). The multiplexer routes the output of the win-
ning hashing function. If bypassing is enabled (block 414),
the general-purpose hashing function is routed to the output
(block 418); otherwise, the multiplexer routes output of the
winning hashing function (block 416). The address is output
from the DHHM 400 and continues to the rest of the
memory controller circuitry.

FIG. 5 is a flow diagram of a method 500 of dynamic
heterogeneous hashing according to another embodiment.
Method 500 may be performed by processing logic that may
comprise hardware (e.g., circuitry, dedicated logic, program-
mable logic, microcode, etc.), software (such as operations
being performed by the MCU), firmware or a combination
thereof. In one embodiment, method 500 is performed by
MCU 105 of FIG. 1. In another embodiment, the method
500 is performed by the DHHM 107 of FIG. 1 or DHHM
207 of FIG. 2. In another embodiment, the method 500 is
performed by the DHHM 400 of FIG. 4. Alternatively, other
components of the computing system 100 may perform
some or all of the operations of the method 500.

Referring to FIG. 5, the method 500 begins by the
processing logic with loading configuration registers to
program multiple specific-purpose hashing functions of a
dynamic heterogeneous hashing module (DHHM) of a MCU
(block 502). The specific-purpose hashing function define
different interleaving sequences for memory requests to
alternately access multiple memory channels. The process-
ing logic determines if a memory request is received (block
504). When the processing logic receives a current memory
request at block 504, the processing logic identifies a
requesting functional unit that originated the memory
request (block 506). The processing logic determines if the
requesting functional unit requires specific-purpose hashing
(block 508). If so, the processing logic selects an appropriate
one of the specific-purpose hashing functions in view of the
identified functional unit (block 510), and the processing
logic performs the selected hashing function on the address
(block 512), and returns to block 504. However, if the
processing logic determines that no specific-purpose hash-
ing is required, the processing logic performs a general-
purpose hashing function on the address (block 514), and
returns to block 504.

In a further embodiment, the physical memory of the
system memory is organized into memory regions, where
each of the memory regions correspond to one of the hashing
functions. In one embodiment, the processing logic obtains
a memory address of the current memory request and
compares the memory address against memory ranges cor-
responding to the specific-purpose hashing functions, and
optionally that of general-purpose hashing function. The
processing logic selects one of the specific-purpose hashing
functions or the general-purpose hashing function for the
current memory request by selecting a winning hashing

10

15

20

25

30

35

40

45

50

55

60

65

10

function in view of the comparison. In a further embodi-
ment, the processing logic performs the specific-purpose
hashing function on the memory address of the memory
request in parallel, along with the general-purpose hashing
function. The processing logic outputs results to a multi-
plexer. The processing logic compares the memory address
with memory ranges and selects one of the inputs of the
multiplexer to be routed to the output of the multiplexer as
controlled by the result of the comparison.

In another embodiment, the processing logic bypasses the
multiplexer when a bypass block of the DHHM is enabled.

In one embodiment, the processing logic performs the
general-purpose hashing functions and performs the spe-
cific-purpose hashing functions, such as the hashing func-
tions described herein.

FIG. 6A is a block diagram illustrating a micro-architec-
ture for a processor 600 that implements dynamic hetero-
geneous hashing according to one embodiment. Specifically,
processor 600 depicts an in-order architecture core and a
register renaming logic, out-of-order issue/execution logic
to be included in a processor according to at least one
embodiment of the disclosure.

Processor 600 includes a front end unit 630 coupled to an
execution engine unit 650, and both are coupled to a
memory unit 670. The processor 600 may include a reduced
instruction set computing (RISC) core, a complex instruc-
tion set computing (CISC) core, a very long instruction word
(VLIW) core, or a hybrid or alternative core type. As yet
another option, processor 600 may include a special-purpose
core, such as, for example, a network or communication
core, compression engine, graphics core, or the like. In one
embodiment, processor 600 may be a multi-core processor
or may be part of a multi-processor system.

The front end unit 630 includes a branch prediction unit
632 coupled to an instruction cache unit 634, which is
coupled to an instruction translation lookaside buffer (TLB)
636, which is coupled to an instruction fetch unit 638, which
is coupled to a decode unit 660. The decode unit 660 (also
known as a decoder) may decode instructions, and generate
as an output one or more micro-operations, micro-code entry
points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect,
or are derived from, the original instructions. The decoder
660 may be implemented using various different mecha-
nisms. Examples of suitable mechanisms include, but are not
limited to, look-up tables, hardware implementations, pro-
grammable logic arrays (PLAs), microcode read only
memories (ROMs), etc. The instruction cache unit 634 is
further coupled to the memory unit 670. The decode unit 660
is coupled to a rename/allocator unit 652 in the execution
engine unit 650.

The execution engine unit 650 includes the rename/
allocator unit 652 coupled to a retirement unit 654 and a set
of one or more scheduler unit(s) 656. The scheduler unit(s)
656 represents any number of different schedulers, including
reservations stations (RS), central instruction window, etc.
The scheduler unit(s) 656 is coupled to the physical register
file(s) unit(s) 658. Each of the physical register file(s) units
658 represents one or more physical register files, different
ones of which store one or more different data types, such as
scalar integer, scalar floating point, packed integer, packed
floating point, vector integer, vector floating point, etc.,
status (e.g., an instruction pointer that is the address of the
next instruction to be executed), etc. The physical register
file(s) unit(s) 658 is overlapped by the retirement unit 654 to
illustrate various ways in which register renaming and
out-of-order execution may be implemented (e.g., using a

US 9,424,209 B2

11

reorder buffer(s) and a retirement register file(s), using a
future file(s), a history buffer(s), and a retirement register
file(s); using a register maps and a pool of registers; etc.).

Generally, the architectural registers are visible from the
outside of the processor or from a programmer’s perspec-
tive. The registers are not limited to any known particular
type of circuit. Various different types of registers are
suitable as long as they are capable of storing and providing
data as described herein. Examples of suitable registers
include, but are not limited to, dedicated physical registers,
dynamically allocated physical registers using register
renaming, combinations of dedicated and dynamically allo-
cated physical registers, etc. The retirement unit 654 and the
physical register file(s) unit(s) 658 are coupled to the execu-
tion cluster(s) 660. The execution cluster(s) 660 includes a
set of one or more execution units 662 and a set of one or
more memory access units 664. The execution units 662
may perform various operations (e.g., shifts, addition, sub-
traction, multiplication) and operate on various types of data
(e.g., scalar floating point, packed integer, packed floating
point, vector integer, vector floating point).

While some embodiments may include a number of
execution units dedicated to specific functions or sets of
functions, other embodiments may include only one execu-
tion unit or multiple execution units that all perform all
functions. The scheduler unit(s) 656, physical register file(s)
unit(s) 658, and execution cluster(s) 660 are shown as being
possibly plural because certain embodiments create separate
pipelines for certain types of data/operations (e.g., a scalar
integer pipeline, a scalar floating point/packed integer/
packed floating point/vector integer/vector floating point
pipeline, and/or a memory access pipeline that each have
their own scheduler unit, physical register file(s) unit, and/or
execution cluster—and in the case of a separate memory
access pipeline, certain embodiments are implemented in
which only the execution cluster of this pipeline has the
memory access unit(s) 664). It should also be understood
that where separate pipelines are used, one or more of these
pipelines may be out-of-order issue/execution and the rest
in-order.

The set of memory access units 664 is coupled to the
memory unit 670, which may include a data prefetcher 680,
a data TLB unit 672, a data cache unit (DCU) 674, and a
level 2 (I.2) cache unit 676, to name a few examples. In
some embodiments DCU 674 is also known as a first level
data cache (L1 cache). The DCU 674 may handle multiple
outstanding cache misses and continue to service incoming
stores and loads. It also supports maintaining cache coher-
ency. The data TLLB unit 672 is a cache used to improve
virtual address translation speed by mapping virtual and
physical address spaces. In one exemplary embodiment, the
memory access units 664 may include a load unit, a store
address unit, and a store data unit, each of which is coupled
to the data TLB unit 672 in the memory unit 670. The 1.2
cache unit 676 may be coupled to one or more other levels
of cache and eventually to a main memory.

In one embodiment, the data prefetcher 680 speculatively
loads/prefetches data to the DCU 674 by automatically
predicting which data a program is about to consume.
Prefetching may refer to transferring data stored in one
memory location (e.g., position) of a memory hierarchy
(e.g., lower level caches or memory) to a higher-level
memory location that is closer (e.g., yields lower access
latency) to the processor before the data is actually
demanded by the processor. More specifically, prefetching
may refer to the early retrieval of data from one of the lower

35

40

45

55

12

level caches/memory to a data cache and/or prefetch buffer
before the processor issues a demand for the specific data
being returned.

The processor 600 may support one or more instructions
sets (e.g., the x86 instruction set (with some extensions that
have been added with newer versions); the MIPS instruction
set of MIPS Technologies of Sunnyvale, Calif.; the ARM
instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.).

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
or threads), and may do so in a variety of ways including
time sliced multithreading, simultaneous multithreading
(where a single physical core provides a logical core for each
of the threads that physical core is simultaneously multi-
threading), or a combination thereof (e.g., time sliced fetch-
ing and decoding and simultaneous multithreading thereat-
ter such as in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes a
separate instruction and data cache units and a shared 1.2
cache unit, alternative embodiments may have a single
internal cache for both instructions and data, such as, for
example, a Level 1 (L1) internal cache, or multiple levels of
internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor.
Alternatively, all of the cache may be external to the core
and/or the processor.

FIG. 6B is a block diagram illustrating an in-order pipe-
line and a register renaming stage, out-of-order issue/execu-
tion pipeline implemented by processing device 600 of FI1G.
6A according to some embodiments of the disclosure. The
solid lined boxes in FIG. 6B illustrate an in-order pipeline,
while the dashed lined boxes illustrates a register renaming,
out-of-order issue/execution pipeline. In FIG. 6B, a proces-
sor pipeline 600 includes a fetch stage 602, a length decode
stage 604, a decode stage 606, an allocation stage 608, a
renaming stage 610, a scheduling (also known as a dispatch
or issue) stage 612, a register read/memory read stage 614,
an execute stage 616, a write back/memory write stage 618,
an exception handling stage 622, and a commit stage 624. In
some embodiments, the ordering of stages 602-624 may be
different than illustrated and are not limited to the specific
ordering shown in FIG. 6B.

FIG. 7 illustrates a block diagram of the micro-architec-
ture for a processor 700 that includes logic circuits to
perform dynamic heterogeneous hashing according to one
embodiment. In some embodiments, an instruction in accor-
dance with one embodiment can be implemented to operate
on data elements having sizes of byte, word, doubleword,
quadword, etc., as well as datatypes, such as single and
double precision integer and floating point datatypes. In one
embodiment the in-order front end 701 is the part of the
processor 700 that fetches instructions to be executed and
prepares them to be used later in the processor pipeline.

The front end 701 may include several units. In one
embodiment, the instruction prefetcher 716 fetches instruc-
tions from memory and feeds them to an instruction decoder
718 which in turn decodes or interprets them. For example,
in one embodiment, the decoder decodes a received instruc-
tion into one or more operations called “micro-instructions”
or “micro-operations” (also called micro op or uops) that the
machine can execute. In other embodiments, the decoder
parses the instruction into an opcode and corresponding data

US 9,424,209 B2

13

and control fields that are used by the micro-architecture to
perform operations in accordance with one embodiment. In
one embodiment, the trace cache 730 takes decoded uops
and assembles them into program ordered sequences or
traces in the uop queue 734 for execution. When the trace
cache 730 encounters a complex instruction, the microcode
ROM 732 provides the vops needed to complete the opera-
tion.

Some instructions are converted into a single micro-op,
whereas others need several micro-ops to complete the full
operation. In one embodiment, if more than four micro-ops
are needed to complete an instruction, the decoder 718
accesses the microcode ROM 732 to do the instruction. For
one embodiment, an instruction can be decoded into a small
number of micro ops for processing at the instruction
decoder 718. In another embodiment, an instruction can be
stored within the microcode ROM 732 should a number of
micro-ops be needed to accomplish the operation. The trace
cache 730 refers to an entry point programmable logic array
(PLA) to determine a correct micro-instruction pointer for
reading the micro-code sequences to complete one or more
instructions in accordance with one embodiment from the
micro-code ROM 732. After the microcode ROM 732
finishes sequencing micro-ops for an instruction, the front
end 701 of the machine resumes fetching micro-ops from the
trace cache 730.

The out-of-order execution engine 703 is where the
instructions are prepared for execution. The out-of-order
execution logic has a number of buffers to smooth out and
reorder the flow of instructions to optimize performance as
they go down the pipeline and get scheduled for execution.
The allocator logic allocates the machine buffers and
resources that each uop needs in order to execute. The
register renaming logic renames logic registers onto entries
in a register file. The allocator also allocates an entry for
each vop in one of the two uop queues, one for memory
operations and one for non-memory operations, in front of
the instruction schedulers: memory scheduler, fast scheduler
702, slow/general floating point scheduler 704, and simple
floating point scheduler 706. The uop schedulers 702, 704,
706, determine when a uop is ready to execute based on the
readiness of their dependent input register operand sources
and the availability of the execution resources the uops need
to complete their operation. The fast scheduler 702 of one
embodiment can schedule on each half of the main clock
cycle while the other schedulers can only schedule once per
main processor clock cycle. The schedulers arbitrate for the
dispatch ports to schedule vops for execution.

Register files 708, 710, sit between the schedulers 702,
704, 706, and the execution units 712, 714, 716, 718, 710,
712, 714 in the execution block 711. There is a separate
register file 708, 710, for integer and floating point opera-
tions, respectively. Each register file 708, 710, of one
embodiment also includes a bypass network that can bypass
or forward just completed results that have not yet been
written into the register file to new dependent uops. The
integer register file 708 and the floating point register file
710 are also capable of communicating data with the other.
For one embodiment, the integer register file 708 is split into
two separate register files, one register file for the low order
32 bits of data and a second register file for the high order
32 bits of data. The floating point register file 710 of one
embodiment has 128 bit wide entries because floating point
instructions typically have operands from 64 to 128 bits in
width.

The execution block 711 contains the execution units 712,
714, 716, 718, 710, 712, 714, where the instructions are

35

40

45

65

14

actually executed. This section includes the register files
708, 710, that store the integer and floating point data
operand values that the micro-instructions need to execute.
The processor 700 of one embodiment is comprised of a
number of execution units: address generation unit (AGU)
712, AGU 714, fast ALU 716, fast ALU 718, slow ALU 710,
floating point ALU 712, floating point move unit 714. For
one embodiment, the floating point execution blocks 712,
714, execute floating point, MMX, SIMD, and SSE, or other
operations. The floating point ALLU 712 of one embodiment
includes a 64 bit by 64 bit floating point divider to execute
divide, square root, and remainder micro-ops. For embodi-
ments of the present disclosure, instructions involving a
floating point value may be handled with the floating point
hardware.

In one embodiment, the ALU operations go to the high-
speed ALU execution units 716, 718. The fast ALUs 716,
718, of one embodiment can execute fast operations with an
effective latency of half a clock cycle. For one embodiment,
most complex integer operations go to the slow ALU 710 as
the slow ALU 710 includes integer execution hardware for
long latency type of operations, such as a multiplier, shifts,
flag logic, and branch processing. Memory load/store opera-
tions are executed by the AGUs 712, 714. For one embodi-
ment, the integer ALLUs 716, 718, 710, are described in the
context of performing integer operations on 64 bit data
operands. In alternative embodiments, the ALUs 716, 718,
710, can be implemented to support a variety of data bits
including 16, 32, 128, 256, etc. Similarly, the floating point
units 712, 714, can be implemented to support a range of
operands having bits of various widths. For one embodi-
ment, the floating point units 712, 714, can operate on 128
bits wide packed data operands in conjunction with SIMD
and multimedia instructions.

In one embodiment, the uops schedulers 702, 704, 706,
dispatch dependent operations before the parent load has
finished executing. As uops are speculatively scheduled and
executed in processor 700, the processor 700 also includes
logic to handle memory misses. If a data load misses in the
data cache, there can be dependent operations in flight in the
pipeline that have left the scheduler with temporarily incor-
rect data. A replay mechanism tracks and re-executes
instructions that use incorrect data. Only the dependent
operations need to be replayed and the independent ones are
allowed to complete. The schedulers and replay mechanism
of one embodiment of a processor are also designed to catch
instruction sequences for text string comparison operations.

The processor 700 also includes logic to implement
dynamic heterogeneous hashing according to one embodi-
ment. In one embodiment, the execution block 711 of
processor 700 may include MCU 115, to perform dynamic
heterogeneous hashing according to the description herein.

The term “registers” may refer to the on-board processor
storage locations that are used as part of instructions to
identify operands. In other words, registers may be those
that are usable from the outside of the processor (from a
programmer’s perspective). However, the registers of an
embodiment should not be limited in meaning to a particular
type of circuit. Rather, a register of an embodiment is
capable of storing and providing data, and performing the
functions described herein. The registers described herein
can be implemented by circuitry within a processor using
any number of different techniques, such as dedicated physi-
cal registers, dynamically allocated physical registers using
register renaming, combinations of dedicated and dynami-
cally allocated physical registers, etc. In one embodiment,
integer registers store thirty-two bit integer data. A register

US 9,424,209 B2

15

file of one embodiment also contains eight multimedia
SIMD registers for packed data.

For the discussions herein, the registers are understood to
be data registers designed to hold packed data, such as 64
bits wide MMX™ registers (also referred to as ‘mm’ reg-
isters in some instances) in microprocessors enabled with
MMX technology from Intel Corporation of Santa Clara,
Calif. These MMX registers, available in both integer and
floating point forms, can operate with packed data elements
that accompany SIMD and SSE instructions. Similarly, 128
bits wide XMM registers relating to SSE2, SSE3, SSE4, or
beyond (referred to generically as “SSEx”) technology can
also be used to hold such packed data operands. In one
embodiment, in storing packed data and integer data, the
registers do not need to differentiate between the two data
types. In one embodiment, integer and floating point are
either contained in the same register file or different register
files. Furthermore, in one embodiment, floating point and
integer data may be stored in different registers or the same
registers.

Embodiments may be implemented in many different
system types. Referring now to FIG. 8, shown is a block
diagram of a multiprocessor system 800 in accordance with
an implementation. As shown in FIG. 8, multiprocessor
system 800 is a point-to-point interconnect system, and
includes a first processor 870 and a second processor 880
coupled via a point-to-point interconnect 850. As shown in
FIG. 8, each of processors 870 and 880 may be multicore
processors, including first and second processor cores (i.e.,
processor cores 874a and 874b and processor cores 884a
and 8845b), although potentially many more cores may be
present in the processors. The processors each may include
hybrid write mode logics in accordance with an embodiment
of the present.

While shown with two processors 870, 880, it is to be
understood that the scope of the present disclosure is not so
limited. In other implementations, one or more additional
processors may be present in a given processor.

Processors 870 and 880 are shown including integrated
memory controller units 882 and 882, respectively. Proces-
sor 870 also includes as part of its bus controller units
point-to-point (P-P) interfaces 876 and 888; similarly, sec-
ond processor 880 includes P-P interfaces 886 and 888.
Processors 870, 880 may exchange information via a point-
to-point (P-P) interface 850 using P-P interface circuits 888,
888. As shown in FIG. 8, IMCs 882 and 882 couple the
processors to respective memories, namely a memory 832
and a memory 834, which may be portions of main memory
locally attached to the respective processors.

Processors 870, 880 may each exchange information with
a chipset 890 via individual P-P interfaces 852, 854 using
point to point interface circuits 876, 894, 886, 898. Chipset
890 may also exchange information with a high-perfor-
mance graphics circuit 838 via a high-performance graphics
interface 839.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 890 may be coupled to a first bus 816 via an
interface 896. In one embodiment, first bus 816 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O
interconnect bus, although the scope of the present disclo-
sure is not so limited.

10

15

20

25

30

35

40

45

50

55

60

65

16

As shown in FIG. 8, various [/O devices 814 may be
coupled to first bus 816, along with a bus bridge 818 which
couples first bus 816 to a second bus 820. In one embodi-
ment, second bus 820 may be a low pin count (LPC) bus.
Various devices may be coupled to second bus 820 includ-
ing, for example, a keyboard and/or mouse 822, communi-
cation devices 827 and a storage unit 828 such as a disk drive
or other mass storage device which may include instruc-
tions/code and data 830, in one embodiment. Further, an
audio I/O 824 may be coupled to second bus 820. Note that
other architectures are possible. For example, instead of the
point-to-point architecture of FIG. 8, a system may imple-
ment a multi-drop bus or other such architecture.

Referring now to FIG. 9, shown is a block diagram of a
third system 900 in accordance with an embodiment of the
present invention. Like elements in FIGS. 8 and 9 bear like
reference numerals, and certain aspects of FIG. 8 have been
omitted from FIG. 9 in order to avoid obscuring other
aspects of FIG. 9.

FIG. 9 illustrates that the processors 970, 980 may include
integrated memory and 1/O control logic (“CL”) 972 and
982, respectively. For at least one embodiment, the CL. 972,
982 may include integrated memory controller units such as
described herein. In addition. CL 972, 982 may also include
1/O control logic. FIG. 9 illustrates that the memories 932,
934 are coupled to the CL. 972, 982, and that I/O devices 914
are also coupled to the control logic 972, 982. Legacy 1/O
devices 915 are coupled to the chipset 990.

FIG. 10 is an exemplary system on a chip (SoC) that may
include one or more of the cores 1002. Other system designs
and configurations known in the arts for laptops, desktops,
handheld PCs, personal digital assistants, engineering work-
stations, servers, network devices, network hubs, switches,
embedded processors, digital signal processors (DSPs),
graphics devices, video game devices, set-top boxes, micro
controllers, cell phones, portable media players, hand held
devices, and various other electronic devices, are also suit-
able. In general, a huge variety of systems or electronic
devices capable of incorporating a processor and/or other
execution logic as disclosed herein are generally suitable.

Referring now to FIG. 10, shown is a block diagram of a
SoC 1000 in accordance with an embodiment of the present
disclosure. Similar elements in FIG. 5 bear like reference
numerals. Also, dashed lined boxes are features on more
advanced SoCs. In FIG. 10, an interconnect unit(s) 1002 is
coupled to: an application processor 1010 which includes a
set of one or more cores 1002A-N and shared cache unit(s)
1006; a system agent unit 1010; a bus controller unit(s)
1016; an integrated memory controller unit(s) 1014; a set or
one or more media processors 1020 which may include
integrated graphics logic 1008, an image processor 1024 for
providing still and/or video camera functionality, an audio
processor 1026 for providing hardware audio acceleration,
and a video processor 1028 for providing video encode/
decode acceleration; a static random access memory
(SRAM) unit 1030; a direct memory access (DMA) unit
1032; and a display unit 1040 for coupling to one or more
external displays.

Turning next to FIG. 11, an embodiment of a system
on-chip (SOC) design in accordance with embodiments of
the disclosure is depicted. As an illustrative example, SOC
1100 is included in user equipment (UE). In one embodi-
ment, UE refers to any device to be used by an end-user to
communicate, such as a hand-held phone, smartphone, tab-
let, ultra-thin notebook, notebook with broadband adapter,
or any other similar communication device. A UE may

US 9,424,209 B2

17

connect to a base station or node, which can correspond in
nature to a mobile station (MS) in a GSM network.

Here, SOC 1100 includes 2 cores—1106 and 1107. Simi-
lar to the discussion above, cores 1106 and 1107 may
conform to an Instruction Set Architecture, such as a pro-
cessor having the Intel® Architecture Core™, an Advanced
Micro Devices, Inc. (AMD) processor, a MIPS-based pro-
cessor, an ARM-based processor design, or a customer
thereof, as well as their licensees or adopters. Cores 1106
and 1107 are coupled to cache control 1108 that is associated
with bus interface unit 1109 and L2 cache 1110 to commu-
nicate with other parts of system 1100. Interconnect 1111
includes an on-chip interconnect, such as an IOSF, AMBA,
or other interconnects discussed above, which can imple-
ment one or more aspects of the described disclosure.

Interconnect 1111 provides communication channels to
the other components, such as a Subscriber Identity Module
(SIM) 1130 to interface with a SIM card, a boot ROM 1135
to hold boot code for execution by cores 1106 and 1107 to
initialize and boot SOC 1100, a SDRAM controller 1140 to
interface with external memory (e.g. DRAM 1160), a flash
controller 1145 to interface with non-volatile memory (e.g.
Flash 1165), a peripheral control 1150 (e.g. Serial Peripheral
Interface) to interface with peripherals, video codecs 1120
and Video interface 1125 to display and receive input (e.g.
touch enabled input), GPU 1115 to perform graphics related
computations, etc. Any of these interfaces may incorporate
aspects of the embodiments described herein.

In addition, the system illustrates peripherals for commu-
nication, such as a Bluetooth module 1170, 3G modem 1175,
GPS 1180, and Wi-Fi 1185. Note as stated above, a UE
includes a radio for communication. As a result, these
peripheral communication modules may not all be included.
However, in a UE some form of a radio for external
communication should be included.

FIG. 12 illustrates a diagrammatic representation of a
machine in the example form of a computing system 1200
within which a set of instructions, for causing the machine
to perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of a server or a
client device in a client-server network environment, or as a
peer machine in a peer-to-peer (or distributed) network
environment. The machine may be a personal computer
(PC), a tablet PC, a set-top box (STB), a Personal Digital
Assistant (PDA), a cellular telephone, a web appliance, a
server, a network router, switch or bridge, or any machine
capable of executing a set of instructions (sequential or
otherwise) that specify actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of
the methodologies discussed herein.

The computing system 1200 includes a processing device
1202, main memory 1204 (e.g., read-only memory (ROM),
flash memory, dynamic random access memory (DRAM)
(such as synchronous DRAM (SDRAM) or DRAM
(RDRAM), etc.), a static memory 1206 (e.g., flash memory,
static random access memory (SRAM), etc.), and a data
storage device 1218, which communicate with each other
via a bus 1230.

Processing device 1202 represents one or more general-
purpose processing devices such as a microprocessor, cen-
tral processing unit, or the like. More particularly, the

10

15

20

25

30

35

40

45

50

55

60

65

18

processing device may be complex instruction set comput-
ing (CISC) microprocessor, reduced instruction set com-
puter (RISC) microprocessor, very long instruction word
(VLIW) microprocessor, or processor implementing other
instruction sets, or processors implementing a combination
of instruction sets. Processing device 1202 may also be one
or more special-purpose processing devices such as an
application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. In one embodiment,
processing device 1202 may include one or processing
cores. The processing device 1202 is configured to execute
the processing logic 1226 for performing the operations
discussed herein. In one embodiment, processing device
1202 can be part of the computing system 100 of FIG. 1.
Alternatively, the computing system 1200 can include other
components as described herein. It should be understood
that the core may support multithreading (executing two or
more parallel sets of operations or threads), and may do so
in a variety of ways including time sliced multithreading,
simultaneous multithreading (where a single physical core
provides a logical core for each of the threads that physical
core is simultaneously multithreading), or a combination
thereof (e.g., time sliced fetching and decoding and simul-
taneous multithreading thereafter such as in the Intel®
Hyperthreading technology).

The computing system 1200 may further include a net-
work interface device 1208 communicably coupled to a
network 1220. The computing system 1200 also may include
a video display unit 1210 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 1212 (e.g., a keyboard), a cursor control device 1214
(e.g., a mouse), a signal generation device 1216 (e.g., a
speaker), or other peripheral devices. Furthermore, comput-
ing system 1200 may include a graphics processing unit
1222, a video processing unit 1228 and an audio processing
unit 1232. In another embodiment, the computing system
1200 may include a chipset (not illustrated), which refers to
a group of integrated circuits, or chips, that are designed to
work with the processing device 1202 and controls commu-
nications between the processing device 1202 and external
devices. For example, the chipset may be a set of chips on
a motherboard that links the processing device 1202 to very
high-speed devices, such as main memory 1204 and graphic
controllers, as well as linking the processing device 1202 to
lower-speed peripheral buses of peripherals, such as USB,
PCI or ISA buses.

The data storage device 1218 may include a computer-
readable storage medium 1224 on which is stored software
1226 embodying any one or more of the methodologies of
functions described herein. The software 1226 may also
reside, completely or at least partially, within the main
memory 1204 as instructions 1226 and/or within the pro-
cessing device 1202 as processing logic 1226 during execu-
tion thereof by the computing system 1200; the main
memory 1204 and the processing device 1202 also consti-
tuting computer-readable storage media.

The computer-readable storage medium 1224 may also be
used to store instructions 1226 utilizing the processing
device 1202, such as described with respect to FIG. 1, and/or
a software library containing methods that call the above
applications. While the computer-readable storage medium
1224 is shown in an example embodiment to be a single
medium, the term “computer-readable storage medium”
should be taken to include a single medium or multiple
media (e.g., a centralized or distributed database, and/or
associated caches and servers) that store the one or more sets

US 9,424,209 B2

19

of instructions. The term “computer-readable storage
medium” shall also be taken to include any medium that is
capable of storing, encoding or carrying a set of instruction
for execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
embodiments. The term “computer-readable storage
medium” shall accordingly be taken to include, but not be
limited to, solid-state memories, and optical and magnetic
media.

The following examples pertain to further embodiments.

Example 1 is a processor comprising: 1) a plurality of
functional units; 2) a plurality of memory channels coupled
to a system memory; and 3) a memory controller unit
(MCU) coupled to the plurality of functional units and the
plurality of memory channels, where the MCU comprises a
dynamic heterogeneous hashing module (DHHM) compris-
ing: a) a plurality of specific-purpose hashing function
blocks that define different interleaving sequences for
memory requests to alternately access the plurality of
memory channels; and b) a hashing-function selection
block, wherein the hashing-function selection block is oper-
able to identify a requesting functional unit from the plu-
rality of functional units originating a current memory
request and to select one of the plurality of specific-purpose
hashing function blocks for the current memory request in
view of the requesting functional unit.

In Example 2, the DHHM of Example 1 comprises a
general-purpose hashing function block that defines a
default interleaving sequence for the memory requests to
alternately access the plurality of memory channels, and
wherein the hashing-function selection block is operable to
select one of the plurality of specific-purpose hashing func-
tion blocks or general-purpose hashing function block for
the current memory request in view of the requesting
functional unit.

In Example 3, in the processor of any one of Examples
1-2, the general-purpose hashing function block is to per-
form a first hashing function and a first hashing function
block of the plurality of special-purpose hashing function
blocks is to perform a second hashing function, wherein the
first hashing function is Bité XOR Bit13 XOR Bit 19, and
wherein the second hashing function is Bité6 XOR Bit9 XOR
Bit13 XOR Bit19.

In Example 4, in the processor of any one of Examples
1-3, the general-purpose hashing function block is to per-
form a first hashing function and a first hashing function
block of the plurality of special-purpose hashing function
blocks is to perform a second hashing function, wherein the
first hashing function is Bité XOR Bit13 XOR Bit 19, and
wherein the second hashing function is Bité6 XOR Bit9 XOR
Bit10 XOR Bitl13 XOR Bit19.

In Example 5, the hashing-function selection block of any
one of Examples 1-4, comprises: a) a memory address range
comparator to receive a memory address of the current
memory request to identify the requesting functional unit;
and b) a multiplexer coupled to the memory address range
comparator and to receive outputs from the plurality of
specific-purpose hashing function blocks and the general-
purpose hashing function block as inputs to the multiplexer,
wherein an output of the memory address range comparator
is configured to control the multiplexer to output one of the
inputs in view of the memory address of the current memory
request.

In Example 6, the memory address range comparator of
any of Examples 1-5, comprises a single comparator to
compare the memory address against a plurality of address
ranges.

10

15

20

25

30

35

40

45

50

55

60

65

20

In Example 7, the memory address range comparator of
any of Examples 1-6, comprises a plurality of comparators,
wherein each of the plurality of comparators is configured to
compare the memory address against a single range.

In Example 8, in any of Examples 1-7, comprises a bypass
block operable to bypass the multiplexer.

In Example 9, in the processor of any of Examples 1-8,
the plurality of specific-purpose hashing function blocks are
programmable.

In Example 10, the DHHM of any of Examples 1-9,
comprises a plurality of configuration registers to program
the plurality of specific-purpose hashing function blocks
respectively.

In Example 11, in the processor of any of Examples 1-10,
memory space of the system memory is segmented into a
plurality of regions and wherein the plurality of specific-
purpose hashing function blocks correspond to one of the
plurality of regions of the system memory.

Various embodiments may have different combinations of
the structural features described above. For instance, all
optional features of the computing system described above
may also be implemented with respect to the method or
process described herein and specifics in the examples may
be used anywhere in one or more embodiments.

In example 12, a method comprises 1) loading a plurality
of values in configuration registers to program a plurality of
specific-purpose hashing functions of a dynamic heteroge-
neous hashing module (DHHM) of a memory controller unit
(MCU) of a processor; 2) receiving, by the DHHM, a current
memory request to access system memory coupled to the
processor via a plurality of memory channels, wherein the
plurality of specific-purpose hashing function define differ-
ent interleaving sequences for memory requests to alter-
nately access the plurality of memory channels; 3) identi-
fying, by the DHHM, a requesting functional unit from a
plurality of functional units of the processor that originated
the current memory request; and 4) selecting, by the DHHM,
one of the plurality of specific-purpose hashing function for
the current memory request in view of the requesting
functional unit.

In Example 13, the method of Example 12 further com-
prises selecting, by the DHHM, a general-purpose hashing
function for the current memory request in view of the
requesting functional unit, wherein the general-purpose
hashing function defines a default interleaving sequence for
the memory requests to alternately access the plurality of
memory channels.

In Example 14, the method of any of Examples 12-13
further comprises: a) obtaining, by the DHHM, a memory
address of the current memory request; and b) comparing, by
the DHHM, the memory address against memory ranges
corresponding to the plurality of special-purpose hashing
functions and general-purpose hashing function, and
wherein the selecting the one of the plurality of specific-
purpose hashing functions for the current memory request
comprising selecting a winning hashing function in view of
the comparison.

In Example 15, the method of any of Examples 12-14
further comprises: a) performing the plurality of specific-
purpose hashing functions on the memory address of the
memory request; b) performing the general-purpose hashing
function on the memory address of the memory request; ¢)
outputting results of the plurality of specific-purpose hash-
ing functions and general-purpose hashing function as inputs
to a multiplexer of the DHHM; d) comparing, by a com-
parator of the DHHM, the memory address with memory
ranges corresponding to the plurality of special-purpose

US 9,424,209 B2

21

hashing functions and general-purpose hashing function;
and e) selecting, by the multiplexer, one of the inputs in view
of the comparison.

In Example 16, the method of any of Examples 12-15
further comprises bypassing the multiplexer when a bypass
block of the DHHM is enabled.

In Example 17, the method of any of Examples 12-16
further comprises organizing, by the MCU, physical
memory into a plurality of memory regions, each of the
plurality of memory regions corresponding to one of the
plurality of special-purpose hashing functions.

In Example 18, in the method of any of Examples 12-17,
the general-purpose hashing function is Bit6 XOR Bit13
XOR Bit 19, and wherein one of the plurality of special-
purpose hashing functions is Bité XOR Bit9 XOR Bit13
XOR Bit19.

In Example 19, in the method of any of Examples 12-18,
the general-purpose hashing function is Bit6 XOR Bit13
XOR Bit 19, and wherein one of the plurality of special-
purpose hashing functions is Bit6 XOR Bit9 XOR Bit10
XOR Bit13 XOR Bit19.

Various embodiments may have different combinations of
the structural features described above. For instance, all
optional features of the processors and methods described
above may also be implemented with respect to a processor
described herein and specifics in the examples may be used
anywhere in one or more embodiments.

Example 20 is an integrated circuit processor comprising
1) a processor core; 2) a memory device operable to store
code memory and data memory; and 3) a memory controller
unit (MCU) coupled between the processor core and the
memory device, wherein the MCU is configured to: a) load
a plurality of values in configuration registers to program a
plurality of specific-purpose hashing functions of a dynamic
heterogeneous hashing module (DHHM); b) receive a cur-
rent memory request to access the memory device via a
plurality of memory channels, wherein the plurality of
specific-purpose hashing function define different interleav-
ing sequences for memory requests to alternately access the
plurality of memory channels; 3) identify a requesting
functional unit from a plurality of functional units of the
processor that originated the current memory request; and 4)
select one of the plurality of specific-purpose hashing func-
tion for the current memory request in view of the requesting
functional unit.

In Example 21, the DHHM of Example 20 comprises: a)
a memory address range comparator to receive a memory
address of the current memory request to identify the
requesting functional unit; and b) a multiplexer coupled to
the memory address range comparator and to receive outputs
from the plurality of specific-purpose hashing function and
the general-purpose hashing function as inputs to the mul-
tiplexer, wherein an output of the memory address range
comparator is configured to control the multiplexer to output
one of the inputs in view of the memory address of the
current memory request.

In Example 22, in the integrated circuit of any of
Examples 20-21, the memory address range comparator
comprises a plurality of comparators, wherein each of the
plurality of comparators is configured to compare the
memory address against a single range.

In Example 23, in the integrated circuit of any of
Examples 20-22 the DHHM further comprises a plurality of
configuration registers to program the plurality of specific-
purpose hashing functions.

Various embodiments may have different combinations of
the operational features described above. For instance, all

10

15

20

25

30

35

40

45

50

55

60

65

22

optional features of the method described above may also be
implemented with respect to a non-transitory, computer-
readable storage medium. Specifics in the examples may be
used anywhere in one or more embodiments.

Example 26 is a non-transitory, computer-readable stor-
age medium including instructions that, when executed by a
processor, cause the processor to perform the method of
Examples 12-20.

Example 24 is a system comprising a system on chip
(SOC) comprising a plurality of functional units and a
memory controller unit (MCU) coupled to the plurality of
functional units, wherein the comprises a dynamic hetero-
geneous hashing module comprising: 1) a plurality of spe-
cific-purpose hashing function blocks that define different
interleaving sequences for memory requests to alternately
access a plurality of memory channels; and 2) a hashing-
function selection block, wherein the hashing-function
selection block is operable to identity a requesting func-
tional unit from the plurality of functional units originating
a current memory request and to select one of the plurality
of specific-purpose hashing function blocks for the current
memory request in view of the requesting functional unit.

In Example 25, the SOC of Example 24 further comprises
the subject matter of Examples 2-11.

In Example 26, the SOC of Example 24 is further con-
figured to perform the subject matter of Examples 12-19.

Example 27 is an apparatus comprising: 1) a plurality of
functional units of a processor; 2) means for loading a
plurality of values in configuration registers to program a
plurality of specific-purpose hashing functions; 3) means for
receiving a current memory request to access system
memory coupled to the processor via a plurality of memory
channels, wherein the plurality of specific-purpose hashing
function define different interleaving sequences for memory
requests to alternately access the plurality of memory chan-
nels; 4) means for identifying a requesting functional unit
from a plurality of functional units of the processor that
originated the current memory request; and 5) means for
selecting one of the plurality of specific-purpose hashing
function for the current memory request in view of the
requesting functional unit.

In Example 28, the apparatus of Example 27 further
comprises subject matter of Examples 1-11 and 20-26.

Example 29 is a system comprising: a memory device and
a processor comprising an execution-aware memory con-
troller unit (EA-MCU), wherein the processor is configured
to perform the method of any of Examples 12-19.

In Example 30, the processor of Example 29 further
comprises the subject matter of any of Examples 1-11 and
20-26.

While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and varia-
tions therefrom. It is intended that the appended claims
cover all such modifications and variations as fall within the
true spirit and scope of this present invention.

In the description herein, numerous specific details are set
forth, such as examples of specific types of processors and
system configurations, specific hardware structures, specific
architectural and micro architectural details, specific register
configurations, specific instruction types, specific system
components, specific measurements/heights, specific pro-
cessor pipeline stages and operation etc. in order to provide
a thorough understanding of the present invention. It will be
apparent, however, to one skilled in the art that these specific
details need not be employed to practice the present inven-
tion. In other instances, well known components or methods,

US 9,424,209 B2

23

such as specific and alternative processor architectures,
specific logic circuits/code for described algorithms, specific
firmware code, specific interconnect operation, specific
logic configurations, specific manufacturing techniques and
materials, specific compiler implementations, specific
expression of algorithms in code, specific power down and
gating techniques/logic and other specific operational details
of computer system have not been described in detail in
order to avoid unnecessarily obscuring the present inven-
tion.

The embodiments are described with reference to
dynamic heterogeneous hashing in specific integrated cir-
cuits, such as in computing platforms or microprocessors.
The embodiments may also be applicable to other types of
integrated circuits and programmable logic devices. For
example, the disclosed embodiments are not limited to
desktop computer systems or portable computers, such as
the Intel® Ultrabooks™ computers. And may be also used
in other devices, such as handheld devices, tablets, other thin
notebooks, systems on a chip (SOC) devices, and embedded
applications. Some examples of handheld devices include
cellular phones, Internet protocol devices, digital cameras,
personal digital assistants (PDAs), and handheld PCs.
Embedded applications typically include a microcontroller,
a digital signal processor (DSP), a system on a chip, network
computers (NetPC), set-top boxes, network hubs, wide area
network (WAN) switches, or any other system that can
perform the functions and operations taught below. It is
described that the system can be any kind of computer or
embedded system. The disclosed embodiments may espe-
cially be used for low-end devices, like wearable devices
(e.g., watches), electronic implants, sensory and control
infrastructure devices, controllers, supervisory control and
data acquisition (SCADA) systems, or the like. Moreover,
the apparatuses, methods, and systems described herein are
not limited to physical computing devices, but may also
relate to software optimizations for energy conservation and
efficiency. As will become readily apparent in the descrip-
tion below, the embodiments of methods, apparatuses, and
systems described herein (whether in reference to hardware,
firmware, software, or a combination thereof) are vital to a
‘green technology’ future balanced with performance con-
siderations.

Although the embodiments herein are described with
reference to a processor, other embodiments are applicable
to other types of integrated circuits and logic devices.
Similar techniques and teachings of embodiments of the
present invention can be applied to other types of circuits or
semiconductor devices that can benefit from higher pipeline
throughput and improved performance. The teachings of
embodiments of the present invention are applicable to any
processor or machine that performs data manipulations.
However, the present invention is not limited to processors
or machines that perform 512 bit, 256 bit, 128 bit, 64 bit, 32
bit, or 16 bit data operations and can be applied to any
processor and machine in which manipulation or manage-
ment of data is performed. In addition, the description herein
provides examples, and the accompanying drawings show
various examples for the purposes of illustration. However,
these examples should not be construed in a limiting sense
as they are merely intended to provide examples of embodi-
ments of the present invention rather than to provide an
exhaustive list of all possible implementations of embodi-
ments of the present invention.

Although the below examples describe instruction han-
dling and distribution in the context of execution units and
logic circuits, other embodiments of the present invention

10

15

20

25

30

35

40

45

50

55

60

65

24

can be accomplished by way of a data or instructions stored
on a machine-readable, tangible medium, which when per-
formed by a machine cause the machine to perform func-
tions consistent with at least one embodiment of the inven-
tion. In one embodiment, functions associated with
embodiments of the present invention are embodied in
machine-executable instructions. The instructions can be
used to cause a general-purpose or special-purpose proces-
sor that is programmed with the instructions to perform the
steps of the present invention. Embodiments of the present
invention may be provided as a computer program product
or software which may include a machine or computer-
readable medium having stored thereon instructions which
may be used to program a computer (or other electronic
devices) to perform one or more operations according to
embodiments of the present invention. Alternatively, opera-
tions of embodiments of the present invention might be
performed by specific hardware components that contain
fixed-function logic for performing the operations, or by any
combination of programmed computer components and
fixed-function hardware components.

Instructions used to program logic to perform embodi-
ments of the invention can be stored within a memory in the
system, such as DRAM, cache, flash memory, or other
storage. Furthermore, the instructions can be distributed via
anetwork or by way of other computer readable media. Thus
a machine-readable medium may include any mechanism
for storing or transmitting information in a form readable by
a machine (e.g., a computer), but is not limited to, floppy
diskettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Erasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.). Accordingly,
the computer-readable medium includes any type of tangible
machine-readable medium suitable for storing or transmit-
ting electronic instructions or information in a form readable
by a machine (e.g., a computer).

A design may go through various stages, from creation to
simulation to fabrication. Data representing a design may
represent the design in a number of manners. First, as is
useful in simulations, the hardware may be represented
using a hardware description language or another functional
description language. Additionally, a circuit level model
with logic and/or transistor gates may be produced at some
stages of the design process. Furthermore, most designs, at
some stage, reach a level of data representing the physical
placement of various devices in the hardware model. In the
case where conventional semiconductor fabrication tech-
niques are used, the data representing the hardware model
may be the data specifying the presence or absence of
various features on different mask layers for masks used to
produce the integrated circuit. In any representation of the
design, the data may be stored in any form of a machine
readable medium. A memory or a magnetic or optical
storage such as a disc may be the machine readable medium
to store information transmitted via optical or electrical
wave modulated or otherwise generated to transmit such
information. When an electrical carrier wave indicating or
carrying the code or design is transmitted, to the extent that
copying, buffering, or re-transmission of the electrical signal
is performed, a new copy is made. Thus, a communication

US 9,424,209 B2

25

provider or a network provider may store on a tangible,
machine-readable medium, at least temporarily, an article,
such as information encoded into a carrier wave, embodying
techniques of embodiments of the present invention.

A module as used herein refers to any combination of
hardware, software, and/or firmware. As an example, a
module includes hardware, such as a micro-controller, asso-
ciated with a non-transitory medium to store code adapted to
be executed by the micro-controller. Therefore, reference to
a module, in one embodiment, refers to the hardware, which
is specifically configured to recognize and/or execute the
code to be held on a non-transitory medium. Furthermore, in
another embodiment, use of a module refers to the non-
transitory medium including the code, which is specifically
adapted to be executed by the microcontroller to perform
predetermined operations. And as can be inferred, in yet
another embodiment, the term module (in this example) may
refer to the combination of the microcontroller and the
non-transitory medium. Often module boundaries that are
illustrated as separate commonly vary and potentially over-
lap. For example, a first and a second module may share
hardware, software, firmware, or a combination thereof,
while potentially retaining some independent hardware,
software, or firmware. In one embodiment, use of the term
logic includes hardware, such as transistors, registers, or
other hardware, such as programmable logic devices.

Use of the phrase ‘configured to,” in one embodiment,
refers to arranging, putting together, manufacturing, offering
to sell, importing and/or designing an apparatus, hardware,
logic, or element to perform a designated or determined task.
In this example, an apparatus or element thereof that is not
operating is still ‘configured to’ perform a designated task if
it is designed, coupled, and/or interconnected to perform
said designated task. As a purely illustrative example, a logic
gate may provide a 0 or a 1 during operation. But a logic gate
‘configured to’ provide an enable signal to a clock does not
include every potential logic gate that may provide a 1 or 0.
Instead, the logic gate is one coupled in some manner that
during operation the 1 or O output is to enable the clock.
Note once again that use of the term ‘configured to’ does not
require operation, but instead focus on the latent state of an
apparatus, hardware, and/or element, where in the latent
state the apparatus, hardware, and/or element is designed to
perform a particular task when the apparatus, hardware,
and/or element is operating.

Furthermore, use of the phrases ‘to,” ‘capable of/to,” and
or ‘operable to,” in one embodiment, refers to some appa-
ratus, logic, hardware, and/or element designed in such a
way to enable use of the apparatus, logic, hardware, and/or
element in a specified manner. Note as above that use of to,
capable to, or operable to, in one embodiment, refers to the
latent state of an apparatus, logic, hardware, and/or element,
where the apparatus, logic, hardware, and/or element is not
operating but is designed in such a manner to enable use of
an apparatus in a specified manner.

A value, as used herein, includes any known representa-
tion of a number, a state, a logical state, or a binary logical
state. Often, the use of logic levels, logic values, or logical
values is also referred to as 1’s and 0’s, which simply
represents binary logic states. For example, a 1 refers to a
high logic level and O refers to a low logic level. In one
embodiment, a storage cell, such as a transistor or flash cell,
may be capable of holding a single logical value or multiple
logical values. However, other representations of values in
computer systems have been used. For example the decimal
number ten may also be represented as a binary value of

20

25

40

45

26

1010 and a hexadecimal letter A. Therefore, a value includes
any representation of information capable of being held in a
computer system.

Moreover, states may be represented by values or portions
of' values. As an example, a first value, such as a logical one,
may represent a default or initial state, while a second value,
such as a logical zero, may represent a non-default state. In
addition, the terms reset and set, in one embodiment, refer
to a default and an updated value or state, respectively. For
example, a default value potentially includes a high logical
value, i.e. reset, while an updated value potentially includes
a low logical value, i.e. set. Note that any combination of
values may be utilized to represent any number of states.

The embodiments of methods, hardware, software, firm-
ware or code set forth above may be implemented via
instructions or code stored on a machine-accessible,
machine readable, computer accessible, or computer read-
able medium which are executable by a processing element.
A non-transitory machine-accessible/readable medium
includes any mechanism that provides (i.e., stores and/or
transmits) information in a form readable by a machine, such
as a computer or electronic system. For example, a non-
transitory machine-accessible medium includes random-ac-
cess memory (RAM), such as static RAM (SRAM) or
dynamic RAM (DRAM); ROM; magnetic or optical storage
medium; flash memory devices; electrical storage devices;
optical storage devices; acoustical storage devices; other
form of storage devices for holding information received
from transitory (propagated) signals (e.g., carrier waves,
infrared signals, digital signals); etc., which are to be dis-
tinguished from the non-transitory mediums that may
receive information there from.

Instructions used to program logic to perform embodi-
ments of the invention may be stored within a memory in the
system, such as DRAM, cache, flash memory, or other
storage. Furthermore, the instructions can be distributed via
anetwork or by way of other computer readable media. Thus
a machine-readable medium may include any mechanism
for storing or transmitting information in a form readable by
a machine (e.g., a computer), but is not limited to, floppy
diskettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Erasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.). Accordingly,
the computer-readable medium includes any type of tangible
machine-readable medium suitable for storing or transmit-
ting electronic instructions or information in a form readable
by a machine (e.g., a computer)

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment of the
present invention. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment” in various places
throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular fea-
tures, structures, or characteristics may be combined in any
suitable manner in one or more embodiments.

In the foregoing specification, a detailed description has
been given with reference to specific exemplary embodi-
ments. It will, however, be evident that various modifica-

US 9,424,209 B2

27

tions and changes may be made thereto without departing
from the broader spirit and scope of the invention as set forth
in the appended claims. The specification and drawings are,
accordingly, to be regarded in an illustrative sense rather
than a restrictive sense. Furthermore, the foregoing use of
embodiment and other exemplarily language does not nec-
essarily refer to the same embodiment or the same example,
but may refer to different and distinct embodiments, as well
as potentially the same embodiment.

Some portions of the detailed description are presented in
terms of algorithms and symbolic representations of opera-
tions on data bits within a computer memory. These algo-
rithmic descriptions and representations are the means used
by those skilled in the data processing arts to most effec-
tively convey the substance of their work to others skilled in
the art. An algorithm is here and generally, conceived to be
a self-consistent sequence of operations leading to a desired
result. The operations are those requiring physical manipu-
lations of physical quantities. Usually, though not necessar-
ily, these quantities take the form of electrical or magnetic
signals capable of being stored, transferred, combined, com-
pared and otherwise manipulated. It has proven convenient
at times, principally for reasons of common usage, to refer
to these signals as bits, values, elements, symbols, charac-
ters, terms, numbers or the like. The blocks described herein
can be hardware, software, firmware or a combination
thereof.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “defining,” “

29 <

receiving,” “determining,” “issuing,” “link-
ing,” “associating,” “obtaining,” “authenticating,” “prohib-
iting,” “executing,” “requesting,” “communicating,” or the
like, refer to the actions and processes of a computing
system, or similar electronic computing device, that manipu-
lates and transforms data represented as physical (e.g.,
electronic) quantities within the computing system’s regis-
ters and memories into other data similarly represented as
physical quantities within the computing system memories
or registers or other such information storage, transmission
or display devices.

The words “example” or “exemplary” are used herein to
mean serving as an example, instance or illustration. Any
aspect or design described herein as “example’ or “exem-
plary” is not necessarily to be construed as preferred or
advantageous over other aspects or designs. Rather, use of
the words “example” or “exemplary” is intended to present
concepts in a concrete fashion. As used in this application,
the term “or” is intended to mean an inclusive “or” rather
than an exclusive “or.” That is, unless specified otherwise, or
clear from context, “X includes A or B” is intended to mean
any of the natural inclusive permutations. That is, if X
includes A; X includes B; or X includes both A and B, then
“X includes A or B” is satisfied under any of the foregoing
instances. In addition, the articles “a” and “an” as used in
this application and the appended claims should generally be
construed to mean “one or more” unless specified otherwise
or clear from context to be directed to a singular form.
Moreover, use of the term “an embodiment” or “one
embodiment” or “an implementation” or “one implementa-
tion” throughout is not intended to mean the same embodi-
ment or implementation unless described as such. Also, the
terms “first,” “second,” “third,” “fourth,” etc. as used herein
are meant as labels to distinguish among different elements

2 <

35

40

45

55

65

28

and may not necessarily have an ordinal meaning according
to their numerical designation.
What is claimed is:
1. A processor comprising:
a plurality of functional units;
a plurality of memory channels coupled to a system
memory; and
a memory controller unit (MCU) coupled to the plurality
of functional units and the plurality of memory chan-
nels, wherein the MCU comprises a dynamic hetero-
geneous hashing module (DHHM) comprising:
a general-purpose hashing function block that defines a
default interleaving sequence for memory requests to
alternately access the plurality of memory channels;
a plurality of specific-purpose hashing function blocks
that define different interleaving sequences for the
memory requests to alternately access the plurality of
memory channels; and
a hashing-function selection block to:
receive a memory address of a current memory
request to identify a requesting functional unit
from the plurality of functional units originating
the current memory request;

receive outputs from the plurality of specific-purpose
hashing function blocks and the general-purpose
hashing function block as inputs;

select one of the plurality of specific-purpose hash-
ing function blocks or the general-purpose hash-
ing function block for the current memory request
in view of the requesting functional unit; and

output one of the inputs in view of the selected one
of the plurality of specific-purpose hashing func-
tion blocks or the general-purpose hashing func-
tion block.

2. The processor of claim 1, wherein the general-purpose
hashing function block is to perform a first hashing function
and a first hashing function block of the plurality of specific-
purpose hashing function blocks is to perform a second
hashing function, wherein the first hashing function is Bit6
XOR Bit13 XOR Bit 19, and wherein the second hashing
function is Bit6é XOR Bit9 XOR Bit13 XOR Bit19.

3. The processor of claim 1, wherein the general-purpose
hashing function block is to perform a first hashing function
and a first hashing function block of the plurality of specific-
purpose hashing function blocks is to perform a second
hashing function, wherein the first hashing function is Bit6
XOR Bit13 XOR Bit 19, and wherein the second hashing
function is Bit6 XOR Bit9 XOR Bitl 0 XOR Bit13 XOR
Bit19.

4. The processor of claim 1, wherein the plurality of
specific-purpose hashing function blocks are programmable.

5. The processor of claim 1, wherein the DHHM further
comprises a plurality of configuration registers to program
the plurality of specific-purpose hashing function blocks
respectively.

6. The processor of claim 1, wherein memory space of the
system memory is segmented into a plurality of regions and
wherein the plurality of specific-purpose hashing function
blocks correspond to one of the plurality of regions of the
system memory.

7. The processor of claim 1, wherein the hashing-function
selection block comprises:

a memory address range comparator to receive the
memory address of the current memory request to
identify the requesting functional unit; and

a multiplexer coupled to the memory address range com-
parator and to receive outputs from the plurality of

US 9,424,209 B2

29

specific-purpose hashing function blocks and the gen-
eral-purpose hashing function block as the inputs to the
multiplexer, wherein output of the memory address
range comparator is to control the multiplexer to output
the one of the inputs in view of the memory address of
the current memory request.

8. A processor comprising:

a plurality of functional units;

a plurality of memory channels coupled to a system

memory; and

a memory controller unit (MCU) coupled to the plurality

of functional units and the plurality of memory chan-

nels, wherein the MCU comprises a dynamic hetero-
geneous hashing module (DHHM) comprising:

a general-purpose hashing function block that defines a
default interleaving sequence for memory requests to
alternately access the plurality of memory channels;

a plurality of specific-purpose hashing function blocks
that define different interleaving sequences for the
memory requests to alternately access the plurality of
memory channels; and

a hashing-function selection block operable to identify
a requesting functional unit from the plurality of
functional units originating a current memory
request and to select one of the plurality of specific-
purpose hashing function blocks or the general-
purpose hashing function block for the current
memory request in view of the requesting functional
unit, wherein the hashing-function selection block
comprises:

a memory address range comparator to receive a
memory address of the current memory request to
identify the requesting functional unit; and

a multiplexer coupled to the memory address range
comparator and to receive outputs from the plurality
of specific-purpose hashing function blocks and the
general-purpose hashing function block as inputs to
the multiplexer, wherein an output of the memory
address range comparator is configured to control the
multiplexer to output one of the inputs in view of the
memory address of the current memory request.

9. The processor of claim 8, wherein the memory address
range comparator comprises a single comparator to compare
the memory address against a plurality of address ranges.

10. The processor of claim 8, wherein the memory address
range comparator comprises a plurality of comparators,
wherein each of the plurality of comparators is configured to
compare the memory address against a single range.

11. The processor of claim 8, wherein the DHHM further
comprises a bypass block operable to bypass the multi-
plexer.

12. A method comprising:

receiving, by a dynamic heterogeneous hashing module

(DHHM) of a memory controller unit (MCU) of a
processor, a current memory request to access system
memory coupled to the processor via a plurality of
memory channels, wherein the DHHM comprises a
plurality of specific-purpose hashing functions that
define different interleaving sequences for memory
requests to alternately access the plurality of memory
channels and a general-purpose hashing function that
defines a default interleaving sequence for the memory
requests to alternately access the plurality of memory
channels;

obtaining, by the DHHM, a memory address of the

current memory request;

5

10

15

20

25

30

35

40

45

50

55

60

65

30

comparing, by the DHHM, the memory address against
memory ranges corresponding to the plurality of spe-
cific-purpose hashing functions and the general-pur-
pose hashing function;

identifying, by the DHHM, a requesting functional unit

from a plurality of functional units of the processor that
originated the current memory request; and

selecting, by the DHHM, one of the plurality of specific-

purpose hashing functions or the general-purpose hash-
ing function for the current memory request in view of
the requesting functional unit, wherein the selecting
comprises selecting a winning hashing function in view
of the comparing.

13. The method of claim 12, further comprising:

performing the plurality of specific-purpose hashing func-

tions on the memory address of the memory request;
performing the general-purpose hashing function on the
memory address of the memory request;

outputting results of the plurality of specific-purpose

hashing functions and general-purpose hashing func-
tion as inputs to a multiplexer of the DHHM;
comparing, by a comparator of the DHHM, the memory
address with memory ranges corresponding to the
plurality of specific-purpose hashing functions and
general-purpose hashing function; and

selecting, by the multiplexer, one of the inputs in view of

the comparing.

14. The method of claim 13, further comprising bypassing
the multiplexer when a bypass block of the DHHM is
enabled.

15. The method of claim 12, further comprising organiz-
ing, by the MCU, physical memory into a plurality of
memory regions, each of the plurality of memory regions
corresponding to one of the plurality of specific-purpose
hashing functions.

16. The method of claim 12, wherein the general-purpose
hashing function is Bité XOR Bitl3 XOR Bit 19, and
wherein one of the plurality of specific-purpose hashing
functions is Bité XOR Bit9 XOR Bit13 XOR Bit19.

17. The method of claim 12, wherein the general-purpose
hashing function is Bité XOR Bitl3 XOR Bit 19, and
wherein one of the plurality of specific-purpose hashing
functions is Bit6 XOR Bit9 XOR Bitl 0 XOR Bit13 XOR
Bit19.

18. An integrated circuit comprising:

a processor core;

a memory device operable to store code memory and data

memory; and

a memory controller unit (MCU) coupled between the

processor core and the memory device, wherein the

MCU is to:

load a plurality of values in configuration registers to
program a plurality of specific-purpose hashing
functions of a dynamic heterogeneous hashing mod-
ule (DHHM);

receive a current memory request to access the memory
device via a plurality of memory channels, wherein
the plurality of specific-purpose hashing functions
define different interleaving sequences for memory
requests to alternately access the plurality of memory
channels;

identify a requesting functional unit from a plurality of
functional units of the processor that originated the
current memory request, wherein the DHHM to
receive a memory address of the current memory
request to identify the requesting functional unit; and

US 9,424,209 B2

31

select one of the plurality of specific-purpose hashing
functions for the current memory request in view of
the requesting functional unit, wherein the DHHM
further to receive outputs from the plurality of spe-
cific-purpose hashing functions and a general-pur-
pose hashing function as inputs and to output one of
the inputs in view of the one of the plurality of
specific-purpose hashing functions.

19. The integrated circuit of claim 18, wherein the DHHM
comprises:

a memory address range comparator to receive the
memory address of the current memory request to
identify the requesting functional unit; and

a multiplexer coupled to the memory address range com-
parator and to receive the outputs from the plurality of
specific-purpose hashing functions and the general-
purpose hashing function as inputs to the multiplexer,
wherein an output of the memory address range com-

5

10

15

32

parator is to control the multiplexer to output the one of
the inputs in view of the memory address of the current
memory request.

20. The integrated circuit of claim 19, wherein the
memory address range comparator comprises a plurality of
comparators, wherein each of the plurality of comparators is
to compare the memory address against a single range.

21. The integrated circuit of claim 19, wherein the DHHM
further comprises a plurality of configuration registers to
program the plurality of specific-purpose hashing functions.

22. The integrated circuit of claim 19, wherein the
memory address range comparator comprises a single com-
parator to compare the memory address against a plurality of
address ranges.

23. The integrated circuit of claim 19, wherein the MCU
is to organize physical memory into a plurality of memory
regions, each of the plurality of memory regions correspond-
ing to one of the plurality of specific-purpose hashing
functions.

